A Hybrid Clustering Approach for Bag-of-Words Image Categorization
نویسندگان
چکیده
منابع مشابه
A Bag of Words Approach for 3D Object Categorization
In this paper we propose a novel framework for 3D object categorization. The object is modeled it in terms of its sub-parts as an histogram of 3D visual word occurrences. We introduce an effective method for hierarchical 3D object segmentation driven by the minima rule that combines spectral clustering – for the selection of seed-regions – with region growing based on fast marching. The front p...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملThe bag of words approach on 3 D domain : retrieval , partial matching and categorization
In this paper the effectiveness of the Bag of Words framework is exploited for the 3D domain. Such approach provides a part-based representation by partitioning the objects into subparts and by characterizing each segment with different geometric descriptors. In this fashion one object is modeled as an histogram of subparts occurrences which becomes its signature. Therefore, such signature is f...
متن کاملEfficient Bag of Scenes Analysis for Image Categorization
In this paper, we address the general problem of image/object categorization with a novel approach referred to as Bag-of-Scenes (BoS).Our approach is efficient for low semantic applications such as texture classification as well as for higher semantic tasks such as natural scenes recognition or fine-grained visual categorization (FGVC). It is based on the widely used combination of i) Sparse co...
متن کاملUnsupervised Robust Clustering for Image Database Categorization
Content-based image retrieval can be dramatically improved by providing a good initial database overview to the user. To address this issue, we present in this paper the Adaptive Robust Competition. This algorithm relies on a non-supervised database categorization, coupled with a selection of prototypes in each resulting category. In our approach, each image is represented by a high-dimensional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2019
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2019/4275720